

Mapping the Oxidizing Capacity of the Global Remote Troposphere

NASA GSFC: Glenn M. Wolfe, Julie Nicely, Jason St. Clair, Jin Liao, Tom Hanisco, Luke Oman

Penn State: Bill Brune, Dave Miller, Alex Thames

NOAA ESRL: Tom Ryerson, Chelsea Thompson, Jeff Peischl, Kathryn McKain, Colm Sweeney

Caltech: Paul Wennberg, John Crounse, Michelle Kim

NCAR: Sam Hall, Kirk Ullmann

NASA LaRC: Glenn Diskin

NASA ARC: Paul Bui, Cecilia Chang, Jon Dean-Day

SAO: Gonzalo González Abad

\$\$\$: NASA ATOM, NASA ACCDAM

Systematic Biases in Global Hydroxyl

Chemical proxies (e.g. methyl chloroform) tell us that models get OH wrong...

Methane Lifetime

Observations: $11.2 \pm 1.3 \text{ y}$

Global models: $9.7 \pm 1.5 \text{ y}$

N/S Hemisphere Ratio

Observations: 0.85 - 0.98

Global models: 1.28 ± 0.10

Naik et al. (2013); Prather et al. (2012); Montzka et al. (2000); Patra et al. (2014)

Wanted: New OH Constraints

...but such constraints are annual and global/hemispheric at best.

- Seasonal cycles?
- Anthropogenic perturbations?
- Lightning? Wildfires? El Niño?

To build process-level understanding, we need to know how OH varies in <u>space</u> and <u>time</u>.

Formaldehyde (HCHO)

 Product of OH + CH₄ (and every other hydrocarbon)

 Atmospheric lifetime ~hours (lost via photolysis and OH)

 Observable via UV/Vis solar scatter (total column)

Recipe for Constraining Near-Global OH

The Atmospheric Tomography Mission (ATom)

NASA DC-8 with *in situ* chemistry payload, including HCHO, OH, and friends

Ω [OH] and Ω [HCHO] Production/Loss Correlate

 Steady-state theory predicts a pseudo-linear relationship between OH concentrations and HCHO production/loss rates

 Slope depends mainly on OH sink distribution (CO, CH₄, other VOC)

OMI-SAO Ω [HCHO] is Valid in Remote Regions

X[OH]: Monthly Tropospheric Mean Concentration

Domain mean: $(1.03 \pm 0.25) \times 10^6 \text{ cm}^{-3}$

NH/SH ratio: 0.89 ± 0.06

Hemispheric Seasonality & Global Buffering

Individual hemispheres exhibit strong seasonality

but

"Global" average X[OH] is identical in both seasons

Take Away

- HCHO and OH are tightly coupled throughout the troposphere
- We can, and will, do better in the future
 - Satellite HCHO retrieval differences
 - Scaling factor dependence on CO, hydrocarbons, etc.
 - Expansion across the OMI record (2004 now)

X[OH] offers spatial and temporal variability!

For the full story, see Wolfe et al., PNAS (2019)

EXTRA

Column Pseudo-Linear Model

OH + X
$$\longrightarrow \alpha_x$$
 HCHO $\xrightarrow{hv,OH}$ products

$$\Omega[HCHO] = s_{OH} \left(\frac{\Omega[OH]}{k'_{HCHO}} \right) + \Omega[HCHO]_0$$

- Slope (s_{OH}) depends on OH sink distribution (CO, CH₄, other VOC) and should not vary much in remote regions
- k'HCHO depends weakly on OH, but photolysis is dominant HCHO sink

OMI AMF Evaluation

OMI Reference Sector Correction Evaluation

OMI HCHO Bias from Cloud Filtering

ATom Vertical Profiles

ATom OH Production and HCHO

$$\Omega[HCHO] = \alpha \frac{\Omega P_{OH}}{k'_{HCHO}} + \Omega[HCHO]_0$$

OH Production

$$O_3 + hv + H_2O \rightarrow 2OH + O2$$
 (38%)

$$HO_2 + NO \rightarrow OH + NO_2$$
 (35%)

$$HO_2 + O_3 \rightarrow OH + 2O_2$$
 (15%)

$$H_2O_2 + hv \rightarrow 2OH \tag{6\%}$$

Other reactions (6%)

Global Model Comparison

